ion detector

Blog & News

Fast Quantification of Whisky Lactone in Oak Wood by Advanced Ion Mobility Spectrometer – AIMS


Whisky lactone (WL) in oak staves / barrels has the biggest share in the resulting taste of beverages. The quantity of WL in oak wood have strong effect on quality of final products. Based on WL quantity, the barrel’s staves are divided into ten categories. This categories are category1 (0-7 μg/g), ......, category10 (63-70 μg/g). In this application report we are introducing the ion mobility spectrometer as useful tool for fast monitoring and quantification of whisky lactone in oak wood.


Separation of Isomeric Compounds by Advanced Ion Mobility Spectrometer - AIMS


The ion mobility spectrometry technique offers advantages like high sensitivity (ppb range), fast response (ms range), compact design, operation in atmospheric pressure and ability to separate the isomeric compounds. As ion mobility spectrometers do not work in vacuum, the ion movement is not straightforward. There occur huge numbers of ion-molecule interactions between charged ions and neutral particles of a drift gas. Thus the ion separation in IMS is not based just on their mass but also on their cross section. This gives an advantage to the IMS technique for fast separation of isomers. In this Lab-Report we will demonstrate the ability of AIMS technique to separate the isomeric compounds.

read more download

Laser Desorption-Ion Mobility Spectrometry As a Useful Tool For Surface Analysis

surface analysis

INNMS 2016 Moscow - Invited lecture


Laser desorption-ion mobility spectrometry as a useful tool for imaging of thin layer chromatography surface

material analysis

Journal of Chromatography A, Volume 1459, 12 August 2016, p. 145–151. DOI: 10.1016/j.chroma.2016.06.069.

We present a novel method for coupling thin layer chromatography (TLC) with ion mobility spectrometry (IMS) using laser desorption technique (LD). After separation of the compounds by TLC, the TLC surface was sampled by the LD-IMS without any further manipulation or preparation. The position of the laser was fixed and the TLC plate was moved in desired directions by the motorized micro-positioning stage. The method was successfully applied to analyze the TLC plates containing explosives (tri nitro toluene, 1,3,5-trinitro- 1,3,5-triazacyclohexane, pentaerythritol tetranitrate, 2,4-dinitro toluene and 3,4-dinitro toluene), amino acids (alanine, proline and isoleucine), nicotine and diphenylamine mixtures and detection limits for these compounds were determined. Combination of TLC with LD-IMS technique offers additional separation dimension, allowing separation of overlapping TLC analytes. The time for TLC sampling by LD-IMS was less than 80 s. The scan rate for LD is adjustable so that fast and effective analysis of the mixtures is possible with the proposed method.

read more

Direct Liquid Sampling for Corona Discharge Ion Mobility Spectrometry

liquid analysis

Anal. Chem., 2015, 87 (14), p. 7389–7394. DOI: 10.1021/acs.analchem.5b01585.

We present a new technique suitable for direct liquid sampling and analysis by ion mobility spectrometry (IMS). The technique is based on introduction of a droplet stream to the IMS reaction region. The technique was successfully used to detect explosives dissolved in methanol and oil as well as to analyze amino acids and dipeptides. One of the main advantages of this technique is its ability to analyze liquid samples without the requirement of any special solution.

read more